(k+1)(k+2)(k+3)=k^3+6k^2+11k+6

Simple and best practice solution for (k+1)(k+2)(k+3)=k^3+6k^2+11k+6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (k+1)(k+2)(k+3)=k^3+6k^2+11k+6 equation:


Simplifying
(k + 1)(k + 2)(k + 3) = k3 + 6k2 + 11k + 6

Reorder the terms:
(1 + k)(k + 2)(k + 3) = k3 + 6k2 + 11k + 6

Reorder the terms:
(1 + k)(2 + k)(k + 3) = k3 + 6k2 + 11k + 6

Reorder the terms:
(1 + k)(2 + k)(3 + k) = k3 + 6k2 + 11k + 6

Multiply (1 + k) * (2 + k)
(1(2 + k) + k(2 + k))(3 + k) = k3 + 6k2 + 11k + 6
((2 * 1 + k * 1) + k(2 + k))(3 + k) = k3 + 6k2 + 11k + 6
((2 + 1k) + k(2 + k))(3 + k) = k3 + 6k2 + 11k + 6
(2 + 1k + (2 * k + k * k))(3 + k) = k3 + 6k2 + 11k + 6
(2 + 1k + (2k + k2))(3 + k) = k3 + 6k2 + 11k + 6

Combine like terms: 1k + 2k = 3k
(2 + 3k + k2)(3 + k) = k3 + 6k2 + 11k + 6

Multiply (2 + 3k + k2) * (3 + k)
(2(3 + k) + 3k * (3 + k) + k2(3 + k)) = k3 + 6k2 + 11k + 6
((3 * 2 + k * 2) + 3k * (3 + k) + k2(3 + k)) = k3 + 6k2 + 11k + 6
((6 + 2k) + 3k * (3 + k) + k2(3 + k)) = k3 + 6k2 + 11k + 6
(6 + 2k + (3 * 3k + k * 3k) + k2(3 + k)) = k3 + 6k2 + 11k + 6
(6 + 2k + (9k + 3k2) + k2(3 + k)) = k3 + 6k2 + 11k + 6
(6 + 2k + 9k + 3k2 + (3 * k2 + k * k2)) = k3 + 6k2 + 11k + 6
(6 + 2k + 9k + 3k2 + (3k2 + k3)) = k3 + 6k2 + 11k + 6

Combine like terms: 2k + 9k = 11k
(6 + 11k + 3k2 + 3k2 + k3) = k3 + 6k2 + 11k + 6

Combine like terms: 3k2 + 3k2 = 6k2
(6 + 11k + 6k2 + k3) = k3 + 6k2 + 11k + 6

Reorder the terms:
6 + 11k + 6k2 + k3 = 6 + 11k + 6k2 + k3

Add '-6' to each side of the equation.
6 + 11k + 6k2 + -6 + k3 = 6 + 11k + 6k2 + -6 + k3

Reorder the terms:
6 + -6 + 11k + 6k2 + k3 = 6 + 11k + 6k2 + -6 + k3

Combine like terms: 6 + -6 = 0
0 + 11k + 6k2 + k3 = 6 + 11k + 6k2 + -6 + k3
11k + 6k2 + k3 = 6 + 11k + 6k2 + -6 + k3

Reorder the terms:
11k + 6k2 + k3 = 6 + -6 + 11k + 6k2 + k3

Combine like terms: 6 + -6 = 0
11k + 6k2 + k3 = 0 + 11k + 6k2 + k3
11k + 6k2 + k3 = 11k + 6k2 + k3

Add '-11k' to each side of the equation.
11k + 6k2 + -11k + k3 = 11k + 6k2 + -11k + k3

Reorder the terms:
11k + -11k + 6k2 + k3 = 11k + 6k2 + -11k + k3

Combine like terms: 11k + -11k = 0
0 + 6k2 + k3 = 11k + 6k2 + -11k + k3
6k2 + k3 = 11k + 6k2 + -11k + k3

Reorder the terms:
6k2 + k3 = 11k + -11k + 6k2 + k3

Combine like terms: 11k + -11k = 0
6k2 + k3 = 0 + 6k2 + k3
6k2 + k3 = 6k2 + k3

Add '-6k2' to each side of the equation.
6k2 + -6k2 + k3 = 6k2 + -6k2 + k3

Combine like terms: 6k2 + -6k2 = 0
0 + k3 = 6k2 + -6k2 + k3
k3 = 6k2 + -6k2 + k3

Combine like terms: 6k2 + -6k2 = 0
k3 = 0 + k3
k3 = k3

Add '-1k3' to each side of the equation.
k3 + -1k3 = k3 + -1k3

Combine like terms: k3 + -1k3 = 0
0 = k3 + -1k3

Combine like terms: k3 + -1k3 = 0
0 = 0

Solving
0 = 0

Couldn't find a variable to solve for.

This equation is an identity, all real numbers are solutions.

See similar equations:

| 3x-3.2=4.6 | | 3(7x-5)+4(16-3x)-2(4x+2)=-1 | | (2x+17)+(x+5)=97 | | 2k+3k=30 | | k^3+6k^2+11k+6=0 | | x^2-10x=-14 | | (x/4-(x^2-8x)/(4x-5))=1/(12x-12) | | 7x+21.2= | | 56=9m-7 | | -3=-40 | | 1=i-13 | | 5.2k+81.9=57.2 | | f(x)=p-3x | | -2v^2-v+12=13v^2+6v | | 3.8-x=5.2 | | -6y+4=4(2y+3) | | X*2+25x=0 | | 2x^2-3x=45.50 | | f(x)=2x^2+9x+5 | | (-x+2)5=(-x-4)7 | | 12x=3+x | | (-x+2)5=(-x-4) | | -27=-5y | | -2-(4-4p)= | | 4x^2-(x^2+25)=0 | | (-x-2)5=(-x-4)7 | | p-9p= | | 9+4x=15-x | | 7+3x-6=9x+1-4x | | (5y+8)-(2+4y)=7 | | y=25x+615 | | 2x^2+2x=5x^2-35x |

Equations solver categories